Welcome to the SCI Materials Hub !
Home > Other > Battery Test Cell > EC603e2 Solid Electrolyte Electrochemical Cell

EC603e2 Solid Electrolyte Electrochemical Cell

  • Product Code:28012306
  • Description:EC603e2 Solid Electrolyte Electrochemical Cell
  • Brand:SCI Materials Hub
  • Lead time:Ask for quote
  • Views:
  • Telephone:+86 153-5789-9751
  • Keywords:EC603e2 Solid Electrolyte Electrochemical Cell, SCI Materials Hub
65.7K

EC603e2 Solid Electrolyte Electrochemical Cell

Product code

Product ImageProduct Features
Common Features

Product description

28012306-1As shown in the figure, the solid-state electrolytic cell adopts a sandwich structure as a whole, builds a gas-solid interface, uses a solid electrolyte to replace the electrolyte, avoids the introduction of anions/cations, and directly realizes the preparation of high-purity liquid product aqueous solutions.

The specific structure is as follows:


1. Cells 1 and 3 are bipolar plates with serpentine airflow channels on the inside, which can effectively increase the concentration of gas reactants on the catalyst surface to achieve high current density.


2. The double-layer structure of an anion membrane (dioxide material) and a gas diffusion layer (supported anode catalyst) is used between the cell bodies 1 and 2 to realize the gas-solid interface and anion transport (Note: a hot press is required to ensure sufficient contact). A double-layer structure of a cation membrane (nafion115) and a gas diffusion layer (supported cathode catalyst) is used between the cells 2 and 3 to realize the gas-solid interface and cation transport. (Note: It needs to be molded with a heat press to ensure full contact).


3. The cell body 2 is the core component of the solid-state electrolytic cell, with a built-in 3mm-thick square (4cm2) hollow layer, which can be filled with a solid electrolyte to replace the electrolyte and realize the direct preparation of liquid fuel. The solid electrolyte is mainly a high molecular polymer or porous ceramic with good electrical conductivity. The purpose of passing pure water is to take away the liquid product, promote the right shift of the reaction equilibrium and obtain an aqueous solution of the product without impurities. After the substances produced in the No. 1 cell and the substances produced in the No. 3 cell pass through their respective membranes, they are combined in the middle No. 2 cell to form a product, which is carried away by the flowing pure water.

Two-electrode system
28012306-2On the basis of 28012306-1, a reference electrode is added. The thickness of the reference electrode chamber is 3mm. The solid-state electrolytic cell adopts a sandwich structure as a whole to build a gas-solid interface. Preparation of high-purity liquid product aqueous solutions.Three-electrode system
28012306-3As shown in the figure, on the basis of 28012306-2, the No. 2 plate has been improved, and a serpentine channel has been added. The solid-state electrolytic cell adopts a sandwich structure as a whole, and the gas-solid interface is constructed to replace the electrolyte with a solid electrolyte, avoiding the introduction of anions/cations and directly realizing the preparation of high-purity liquid product aqueous solutions.Snake channel system
SCI Materials Hub is Committed to Offering The Best Price & Customer Services!


For international orders, please ask us for quotes via

Email: contact@scimaterials.cn

Tel: +86 153-5789-9751


Clik here to put quick orders on our Alibaba shop

EC603e2 Solid Electrolyte Electrochemical Cell

Product code

Product description

PriceDelivery date
28012306-1Two-electrode system

$1736/pc

Ask for quote
28012306-2Three-electrode system$1892.8/pcAsk for quote
28012306-3Snake channel system$1904/pcAsk for quote
SCI Materials Hub is Committed to Offering The Best Price & Customer Services!


- The price listed above is in U.S. dollars

Worldwide shipping via DHL, SF-Express, FedEx, TNT & other requested carriers.

Payments via Bank Transfer, Paypal, Credit card (via Alibaba), Alipay, Wechat-pay are accepted.


Please contact us for larger quantities or becoming our distributors.


Partial references citing our materials (from Google Scholar)


Carbon Dioxide Reduction

1. ACS Nano Strain Relaxation in Metal Alloy Catalysts Steers the Product Selectivity of Electrocatalytic CO2 Reduction

The bipolar membrane (Fumasep FBM) in this paper was purchased from SCI Materials Hub, which was used in rechargeable Zn-CO2 battery tests. The authors reported a strain relaxation strategy to determine lattice strains in bimetal MNi alloys (M = Pd, Ag, and Au) and realized an outstanding CO2-to-CO Faradaic efficiency of 96.6% with outstanding activity and durability toward a Zn-CO2 battery.


2. Front. Chem. Boosting Electrochemical Carbon Dioxide Reduction on Atomically Dispersed Nickel Catalyst

In this paper, Vulcan XC-72R was purchased from SCI Materials Hub. Vulcan XC 72R carbon is the most common catalyst support used in the anode and cathode electrodes of Polymer Electrolyte Membrane Fuel Cells (PEMFC), Direct Methanol Fuel Cells (DMFC), Alkaline Fuel Cells (AFC), Microbial Fuel Cells (MFC), Phosphoric Acid Fuel Cells (PAFC), and many more!


3. Adv. Mater. Partially Nitrided Ni Nanoclusters Achieve Energy-Efficient Electrocatalytic CO2 Reduction to CO at Ultralow Overpotential

An AEM membrane (Sustainion X37-50 Grade RT, purchased from SCI Materials Hub) was activated in 1 M KOH for 24 h, washed with ultra-purity water prior to use.


4. Adv. Funct. Mater. Nanoconfined Molecular Catalysts in Integrated Gas Diffusion Electrodes for High-Current-Density CO2 Electroreduction

In this paper (Supporting Information), an anion exchanged membrane (Fumasep FAB-PK-130 obtained from SCI Materials Hub (www.scimaterials.cn)) was used to separate the catholyte and anolyte chambers.

SCI Materials Hub: we also recommend our Fumasep FAB-PK-75 for the use in a flow cell.


5. Appl. Catal. B Efficient utilization of nickel single atoms for CO2 electroreduction by constructing 3D interconnected nitrogen-doped carbon tube network

In this paper, the Nafion 117 membrane was obtained from SCI Materials Hub.


6. Vacuum Modulable Cu(0)/Cu(I)/Cu(II) sites of Cu/C catalysts derived from MOF for highly selective CO2 electroreduction to hydrocarbons

In this paper, Proton exchange membrane (Nafion 117), Nafion D520, and Toray 060 carbon paper were purchased from SCI Materials Hub.


7. National Science Review Confinement of ionomer for electrocatalytic CO2 reduction reaction via efficient mass transfer pathways

An anion exchange membrane (PiperION-A15-HCO3) was obtained from SCI Materials Hub.


8. Catalysis Communications Facilitating CO2 electroreduction to C2H4 through facile regulating {100} & {111} grain boundary of Cu2O

Carbon paper (TGPH060), membrane solution (Nafion D520), and ionic membrane (Nafion N117) were obtained from Wuhu Eryi Material Technology Co., Ltd (a company under SCI Materials Hub).


Batteries

1. J. Mater. Chem. A Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium–sulfur batteries

Graphene oxide (GO) in this paper was obtained from SCI Materials Hub. The authors introduced a Janus Fe3C/N-CNF@RGO electrode consisting of 1D Fe3C decorated N-doped carbon nanofibers (Fe3C/N-CNFs) side and 2D reduced graphene oxide (RGO) side as the free-standing carrier of Li2S6 catholyte to improve the overall electrochemical performance of Li-S batteries.


2. Joule A high-voltage and stable zinc-air battery enabled by dual-hydrophobic-induced proton shuttle shielding

This paper used more than 10 kinds of materials from SCI Materials Hub and the authors gave detailed properity comparsion.

The commercial IEMs of Fumasep FAB-PK-130 and Nafion N117 were obtained from SCI Materials Hub.

Gas diffusion layers of GDL340 (CeTech) and SGL39BC (Sigracet) and Nafion dispersion (Nafion D520) were obtained from SCI Materials Hub.

Zn foil (100 mm thickness) and Zn powder were obtained from the SCI Materials Hub.

Commercial 20% Pt/C, 40% Pt/C and IrO2 catalysts were also obtained from SCI Materials Hub.


3. Journal of Energy Chemistry Vanadium oxide nanospheres encapsulated in N-doped carbon nanofibers with morphology and defect dual-engineering toward advanced aqueous zinc-ion batteries

In this paper, carbon cloth (W0S1011) was obtained from SCI Materials Hub. The flexible carbon cloth matrix guaranteed the stabilization of the electrode and improved the conductivity of the cathode.


4. Energy Storage Materials Defect-abundant commercializable 3D carbon papers for fabricating composite Li anode with high loading and long life

The 3D carbon paper (TGPH060 raw paper) were purchased from SCI Materials Hub.


5. Nanomaterials A Stable Rechargeable Aqueous Zn–Air Battery Enabled by Heterogeneous MoS2 Cathode Catalysts

Nafion D520 (5 wt%), and carbon paper (GDL340) were received from SCI-Materials-Hub.


6. SSRN An Axially Directed Cobalt-Phthalocyanine Covalent Organic Polymer as High-Efficient Bifunctional Catalyst for Zn-Air Battery

Carbon cloth (W0S1011) and other electrochemical consumables required for air cathode were provided by SCI Materials Hub.


Oxygen Reduction Reaction

1. J. Chem. Eng. Superior Efficiency Hydrogen Peroxide Production in Acidic Media through Epoxy Group Adjacent to Co-O/C Active Centers on Carbon Black

In this paper, Vulcan XC 72 carbon black, ion membrane (Nafion N115, 127 μL), Nafion solution (D520, 5 wt%), and carbon paper (AvCarb GDS 2230 and Spectracarb 2050A-1050) were purchased from SCI Materials Hub.


2. Journal of Colloid and Interface Science Gaining insight into the impact of electronic property and interface electrostatic field on ORR kinetics in alloy engineering via theoretical prognostication and experimental validation

The 20 wt% Pt3M (M = Cr, Co, Cu, Pd, Sn, and Ir) were purchased from SCI Materials Hub. This work places emphasis on the kinetics of the ORR concerning Pt3M (M = Cr, Co, Cu, Pd, Sn, and Ir) catalysts, and integrates theoretical prognostication and experimental validation to illuminate the fundamental principles of alloy engineering.


Water Electrolysis

1. International Journal of Hydrogen Energy Gold as an efficient hydrogen isotope separation catalyst in proton exchange membrane water electrolysis

The cathodic catalysts of Pt/C (20 wt%, 2–3 nm) and Au/C (20 wt%, 4–5 nm) were purchased from SCI Materials Hub.


2. Small Science Silver Compositing Boosts Water Electrolysis Activity and Durability of RuO2 in a Proton-Exchange-Membrane Water Electrolyzer

Two fiber felts (0.35 mm thickness, SCI Materials Hub) were used as the porous transport layers at both the cathode and the anode.


3. Advanced Functional Materials Hierarchical Crystalline/Amorphous Heterostructure MoNi/NiMoOx for Electrochemical Hydrogen Evolution with Industry-Level Activity and Stability

Anion-exchange membrane (FAA-3-PK-130) was obtained from SCI Materials Hub website.


Fuel Cells

1. Polymer Sub-two-micron ultrathin proton exchange membrane with reinforced mechanical strength

Gas diffusion electrode (60% Pt/C, Carbon paper) was purchased from SCI Materials Hub.


Characterization

1. Chemical Engineering Journal Electrochemical reconstitution of Prussian blue analogue for coupling furfural electro-oxidation with photo-assisted hydrogen evolution reaction

An Au nanoparticle film was deposited on the total reflecting plane of a single reflection ATR crystal (SCI Materials Hub, Wuhu, China) via sputter coater.

Related Products

We Provide A Broad Range of Materials, Instruments & Solutions in Advanced Science and Technologies About Us
Product consultation
Customer service1
Customer service2
After-sales and technical consultation
Customer service1
Customer service2
WeChat Customer Service

Back to top