Welcome to the SCI Materials Hub !
Home > Carbon Paper Electrodes > Paper Electrode (Electrolyer) > DiffuCarb™ E005 Pt-RuOx Chemically Coated on Carbon Paper

DiffuCarb™ E005 Pt-RuOx Chemically Coated on Carbon Paper

  • Product Code:
  • Description:
  • Brand:DiffuCarb™
  • Lead time:3-7 days
  • Views:
  • Telephone:+86 153-5789-9751; +86 156-0553-2352
  • Keywords:DiffuCarb™ E005 Pt-RuOx Chemically Coated on Carbon Paper,SCI Materials Hub
65.7K

DiffuCarb™ E005 Pt-RuOx (Chemical Plating)/Carbon Paper and DiffuCarb™ E005PT Pt-RuOx (Chemical Plating)/Platinized Carbon Paper are two advanced electrode materials, widely used in water electrolysis, Oxygen Reduction Reaction (ORR), and other electrochemical processes. These electrodes are made by depositing a platinum-ruthenium oxide (Pt-RuOx) mixed catalyst layer onto carbon paper or platinum-plated carbon paper substrates. The combination of platinum's high catalytic activity and ruthenium oxide's stability and anti-oxidation properties effectively enhances the overall performance of the electrodes. Below is a detailed introduction to these two materials:

1. DiffuCarb™ E005 Pt-RuOx (Chemical Plating)/Carbon Paper

1.1. Material Characteristics

  • High Catalytic Activity: The Pt-RuOx combination effectively lowers the overpotential for the Oxygen Evolution Reaction (OER) while also showing excellent catalytic activity in the Oxygen Reduction Reaction (ORR).
  • Enhanced Stability: The anti-oxidative protection provided by RuOx extends the electrode's lifespan in high potential and corrosive environments.
  • Good Conductivity: The carbon paper substrate provides high conductivity, ensuring efficient electron transport during electrochemical reactions.

1.2. Applications

  • Water Electrolysis Systems: Pt-RuOx/carbon paper electrodes are widely used in acidic (PEM), alkaline (ALK), and neutral water electrolysis systems, especially for anode applications requiring high catalytic activity and stability.
  • Fuel Cells: Due to their excellent ORR performance, these electrodes are suitable for Proton Exchange Membrane Fuel Cells (PEMFC) and other electrochemical devices that require efficient oxygen reduction.

2. DiffuCarb™ E005PT Pt-RuOx (Chemical Plating)/Platinized Carbon Paper

2.1. Material Characteristics

  • Higher Conductivity and Activity: The platinum-plated carbon paper substrate provides higher conductivity for the Pt-RuOx catalyst layer, significantly improving the electrode's performance at high current densities.
  • Exceptional Stability: The platinum layer protects the electrode, increasing its durability in corrosive environments, while the RuOx layer effectively prevents the oxidation and loss of platinum.
  • Bimetallic Synergy: The synergy between platinum and RuOx enhances the catalytic efficiency for both OER and ORR reactions.

2.2. Applications

  • High-Performance Water Electrolysis: Particularly suitable for PEM, AEM, and ALK electrolysis systems that demand extremely high catalytic activity and stability.
  • Fuel Cells: Ideal for fuel cell anodes that require efficient ORR catalysis, particularly in PEMFCs, where it has significant potential.
  • Other Electrochemical Reactions: Including CO2 reduction, methanol oxidation, and other related processes.

3. Comparison and Summary

3.1. Similarities

  • High Catalytic Activity: Both electrodes use Pt-RuOx as the catalyst layer, offering excellent catalytic performance for both Oxygen Evolution and Oxygen Reduction reactions.
  • Versatile Applications: Both are suitable for a wide range of electrochemical environments (PEM, AEM, ALK), covering a broad range of applications.

3.2. Differences

  • Conductivity and Durability: Pt-RuOx/platinum-plated carbon paper electrodes, with the platinum layer in the substrate, exhibit higher conductivity and durability, making them especially suitable for high current density and long-term operations.
  • Cost: Pt-RuOx/carbon paper electrodes are more cost-effective, making them suitable for general industrial applications. In contrast, Pt-RuOx/platinum-plated carbon paper electrodes, although more expensive, offer superior performance in high-demand applications.

4. Conclusion

DiffuCarb™ E005 Pt-RuOx (Chemical Plating)/Carbon Paper and DiffuCarb™ E005PT Pt-RuOx (Chemical Plating)/Platinized Carbon Paper are both highly efficient electrode materials for water electrolysis and fuel cells. Combining platinum's high catalytic activity with RuOx's stability, they are widely used in various electrochemical reactions. Depending on the specific needs of the application, the choice of substrate (carbon paper or platinum-plated carbon paper) can optimize the electrode's performance and cost, achieving more efficient and durable electrochemical devices.

For international orders, please ask us for quotes via

Email: contact@scimaterials.cn

Tel: +86 153-5789-9751

Wechat: SCI-Materials-Hub


Clik here to put quick orders on our Alibaba / Amazon / ebay store.

Product Price and Specifications

Pt:IrOx

Atomic ratio

DiffuCarb™ E005 Pt-RuOx Chemically Coated on Carbon Paper

DiffuCarb™ E005PT Pt-RuOx Chemically Coated on Platinized Carbon Paper

9:1

2.0mg/cm2 Pt9(RuOx)1: $190 (5*5cm); $540 (10*10cm); $2040 (20*20cm)

3.0mg/cm2 Pt9(RuOx)1: $260 (5*5cm); $760(10*10cm); $2740 (20*20cm)

4.0mg/cm2 Pt9(RuOx)1: $310 (5*5cm); $880 (10*10cm); $3420 (20*20cm)

2.0mg/cm2 Pt9(RuOx)1: $220 (5*5cm); $660 (10*10cm); $2520 (20*20cm)

3.0mg/cm2 Pt9(RuOx)1: $290 (5*5cm); $880 (10*10cm); $3220 (20*20cm)

4.0mg/cm2 Pt9(RuOx)1: $340 (5*5cm); $1000 (10*10cm); $3900 (20*20cm)

8:2

2.0mg/cm2 Pt8(RuOx)2: $190 (5*5cm); $540 (10*10cm); $2040 (20*20cm)

3.0mg/cm2 Pt8(RuOx)2: $260 (5*5cm); $760(10*10cm); $2740 (20*20cm)

4.0mg/cm2 Pt8(RuOx)2: $310 (5*5cm); $880 (10*10cm); $3420 (20*20cm)

2.0mg/cm2 Pt8(RuOx)2: $220 (5*5cm); $660 (10*10cm); $2520 (20*20cm)

3.0mg/cm2 Pt8(RuOx)2: $290 (5*5cm); $880 (10*10cm); $3220 (20*20cm)

4.0mg/cm2 Pt8(RuOx)2: $340 (5*5cm); $1000 (10*10cm); $3900 (20*20cm)

7:3

2.0mg/cm2 Pt7(RuOx)3: $190 (5*5cm); $540 (10*10cm); $2040 (20*20cm)

3.0mg/cm2 Pt7(RuOx)3: $260 (5*5cm); $760(10*10cm); $2740 (20*20cm)

4.0mg/cm2 Pt7(RuOx)3: $310 (5*5cm); $880 (10*10cm); $3420 (20*20cm)

2.0mg/cm2 Pt7(RuOx)3: $220 (5*5cm); $660 (10*10cm); $2520 (20*20cm)

3.0mg/cm2 Pt7(RuOx)3: $290 (5*5cm); $880 (10*10cm); $3220 (20*20cm)

4.0mg/cm2 Pt7(RuOx)3: $340 (5*5cm); $1000 (10*10cm); $3900 (20*20cm)

6:4

2.0mg/cm2 Pt6(RuOx)4: $190 (5*5cm); $540 (10*10cm); $2040 (20*20cm)

3.0mg/cm2 Pt6(RuOx)4: $260 (5*5cm); $760(10*10cm); $2740 (20*20cm)

4.0mg/cm2 Pt6(RuOx)4: $310 (5*5cm); $880 (10*10cm); $3420 (20*20cm)

2.0mg/cm2 Pt6(RuOx)4: $220 (5*5cm); $660 (10*10cm); $2520 (20*20cm)

3.0mg/cm2 Pt6(RuOx)4: $290 (5*5cm); $880 (10*10cm); $3220 (20*20cm)

4.0mg/cm2 Pt6(RuOx)4: $340 (5*5cm); $1000 (10*10cm); $3900 (20*20cm)

5:5

2.0mg/cm2 Pt5(RuOx)5: $190 (5*5cm); $540 (10*10cm); $2040 (20*20cm)

3.0mg/cm2 Pt5(RuOx)5: $260 (5*5cm); $760(10*10cm); $2740 (20*20cm)

4.0mg/cm2 Pt5(RuOx)5: $310 (5*5cm); $880 (10*10cm); $3420 (20*20cm)

2.0mg/cm2 Pt5(RuOx)5: $220 (5*5cm); $660 (10*10cm); $2520 (20*20cm)

3.0mg/cm2 Pt5(RuOx)5: $290 (5*5cm); $880 (10*10cm); $3220 (20*20cm)

4.0mg/cm2 Pt5(RuOx)5: $340 (5*5cm); $1000 (10*10cm); $3900 (20*20cm)

4:6

2.0mg/cm2 Pt4(RuOx)6: $190 (5*5cm); $540 (10*10cm); $2040 (20*20cm)

3.0mg/cm2 Pt4(RuOx)6: $260 (5*5cm); $760(10*10cm); $2740 (20*20cm)

4.0mg/cm2 Pt4(RuOx)6: $310 (5*5cm); $880 (10*10cm); $3420 (20*20cm)

2.0mg/cm2 Pt4(RuOx)6: $220 (5*5cm); $660 (10*10cm); $2520 (20*20cm)

3.0mg/cm2 Pt4(RuOx)6: $290 (5*5cm); $880 (10*10cm); $3220 (20*20cm)

4.0mg/cm2 Pt4(RuOx)6: $340 (5*5cm); $1000 (10*10cm); $3900 (20*20cm)

3:7

2.0mg/cm2 Pt3(RuOx)7: $190 (5*5cm); $540 (10*10cm); $2040 (20*20cm)

3.0mg/cm2 Pt3(RuOx)7: $260 (5*5cm); $760(10*10cm); $2740 (20*20cm)

4.0mg/cm2 Pt3(RuOx)7: $310 (5*5cm); $880 (10*10cm); $3420 (20*20cm)

2.0mg/cm2 Pt3(RuOx)7: $220 (5*5cm); $660 (10*10cm); $2520 (20*20cm)

3.0mg/cm2 Pt3(RuOx)7: $290 (5*5cm); $880 (10*10cm); $3220 (20*20cm)

4.0mg/cm2 Pt3(IRuOx)7: $340 (5*5cm); $1000 (10*10cm); $3900 (20*20cm)

2:8

2.0mg/cm2 Pt2(RuOx)8: $190 (5*5cm); $540 (10*10cm); $2040 (20*20cm)

3.0mg/cm2 Pt2(RuOx)8: $260 (5*5cm); $760(10*10cm); $2740 (20*20cm)

4.0mg/cm2 Pt2(RuOx)8: $310 (5*5cm); $880 (10*10cm); $3420 (20*20cm)

2.0mg/cm2 Pt2(RuOx)8: $220 (5*5cm); $660 (10*10cm); $2520 (20*20cm)

3.0mg/cm2 Pt2(RuOx)8: $290 (5*5cm); $880 (10*10cm); $3220 (20*20cm)

4.0mg/cm2 Pt2(RuOx)8: $340 (5*5cm); $1000 (10*10cm); $3900 (20*20cm)

1:9

2.0mg/cm2 Pt1(RuOx)9: $190 (5*5cm); $540 (10*10cm); $2040 (20*20cm)

3.0mg/cm2 Pt1(RuOx)9: $260 (5*5cm); $760(10*10cm); $2740 (20*20cm)

4.0mg/cm2 Pt1(RuOx)9: $310 (5*5cm); $880 (10*10cm); $3420 (20*20cm)

2.0mg/cm2 Pt1(RuOx)9: $220 (5*5cm); $660 (10*10cm); $2520 (20*20cm)

3.0mg/cm2 Pt1(RuOx)9: $290 (5*5cm); $880 (10*10cm); $3220 (20*20cm)

4.0mg/cm2 Pt1(RuOx)9: $340 (5*5cm); $1000 (10*10cm); $3900 (20*20cm)

SCI Materials Hub Is Committed to Offering The Best Price & Customer Services!

DiffuCarb™ E005 Pt-RuOx (Chemical Coating) / Carbon Paper is defaulted to use TGPH060 raw carbon paper.

DiffuCarb™ E005PT Pt-RuOx (Chemical Coating) / Platinized Carbon Paper defaults to using TGPH060P platinized carbon paper (with a default platinum loading of 0.1 mg/cm² Pt).


Worldwide shipping via DHL, SF-Express & other requested carriers.

Payments via Bank Transfer, Paypal, Credit card (via Taobao), Alipay, Wechat-pay are accepted.

Partial references citing our materials (from Google Scholar)


Carbon Dioxide Reduction

1. ACS Nano Strain Relaxation in Metal Alloy Catalysts Steers the Product Selectivity of Electrocatalytic CO2 Reduction

The bipolar membrane (Fumasep FBM) in this paper was purchased from SCI Materials Hub, which was used in rechargeable Zn-CO2 battery tests. The authors reported a strain relaxation strategy to determine lattice strains in bimetal MNi alloys (M = Pd, Ag, and Au) and realized an outstanding CO2-to-CO Faradaic efficiency of 96.6% with outstanding activity and durability toward a Zn-CO2 battery.


2. Front. Chem. Boosting Electrochemical Carbon Dioxide Reduction on Atomically Dispersed Nickel Catalyst

In this paper, Vulcan XC-72R was purchased from SCI Materials Hub. Vulcan XC 72R carbon is the most common catalyst support used in the anode and cathode electrodes of Polymer Electrolyte Membrane Fuel Cells (PEMFC), Direct Methanol Fuel Cells (DMFC), Alkaline Fuel Cells (AFC), Microbial Fuel Cells (MFC), Phosphoric Acid Fuel Cells (PAFC), and many more!


3. Adv. Mater. Partially Nitrided Ni Nanoclusters Achieve Energy-Efficient Electrocatalytic CO2 Reduction to CO at Ultralow Overpotential

An AEM membrane (Sustainion X37-50 Grade RT, purchased from SCI Materials Hub) was activated in 1 M KOH for 24 h, washed with ultra-purity water prior to use.


4. Adv. Funct. Mater. Nanoconfined Molecular Catalysts in Integrated Gas Diffusion Electrodes for High-Current-Density CO2 Electroreduction

In this paper (Supporting Information), an anion exchanged membrane (Fumasep FAB-PK-130 obtained from SCI Materials Hub (www.scimaterials.cn)) was used to separate the catholyte and anolyte chambers.

SCI Materials Hub: we also recommend our Fumasep FAB-PK-75 for the use in a flow cell.


5. Appl. Catal. B Efficient utilization of nickel single atoms for CO2 electroreduction by constructing 3D interconnected nitrogen-doped carbon tube network

In this paper, the Nafion 117 membrane was obtained from SCI Materials Hub.


6. Vacuum Modulable Cu(0)/Cu(I)/Cu(II) sites of Cu/C catalysts derived from MOF for highly selective CO2 electroreduction to hydrocarbons

In this paper, Proton exchange membrane (Nafion 117), Nafion D520, and Toray 060 carbon paper were purchased from SCI Materials Hub.


7. National Science Review Confinement of ionomer for electrocatalytic CO2 reduction reaction via efficient mass transfer pathways

An anion exchange membrane (PiperION-A15-HCO3) was obtained from SCI Materials Hub.


8. Catalysis Communications Facilitating CO2 electroreduction to C2H4 through facile regulating {100} & {111} grain boundary of Cu2O

Carbon paper (TGPH060), membrane solution (Nafion D520), and ionic membrane (Nafion N117) were obtained from Wuhu Eryi Material Technology Co., Ltd (a company under SCI Materials Hub).


Batteries

1. J. Mater. Chem. A Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium–sulfur batteries

Graphene oxide (GO) in this paper was obtained from SCI Materials Hub. The authors introduced a Janus Fe3C/N-CNF@RGO electrode consisting of 1D Fe3C decorated N-doped carbon nanofibers (Fe3C/N-CNFs) side and 2D reduced graphene oxide (RGO) side as the free-standing carrier of Li2S6 catholyte to improve the overall electrochemical performance of Li-S batteries.


2. Joule A high-voltage and stable zinc-air battery enabled by dual-hydrophobic-induced proton shuttle shielding

This paper used more than 10 kinds of materials from SCI Materials Hub and the authors gave detailed properity comparsion.

The commercial IEMs of Fumasep FAB-PK-130 and Nafion N117 were obtained from SCI Materials Hub.

Gas diffusion layers of GDL340 (CeTech) and SGL39BC (Sigracet) and Nafion dispersion (Nafion D520) were obtained from SCI Materials Hub.

Zn foil (100 mm thickness) and Zn powder were obtained from the SCI Materials Hub.

Commercial 20% Pt/C, 40% Pt/C and IrO2 catalysts were also obtained from SCI Materials Hub.


3. Journal of Energy Chemistry Vanadium oxide nanospheres encapsulated in N-doped carbon nanofibers with morphology and defect dual-engineering toward advanced aqueous zinc-ion batteries

In this paper, carbon cloth (W0S1011) was obtained from SCI Materials Hub. The flexible carbon cloth matrix guaranteed the stabilization of the electrode and improved the conductivity of the cathode.


4. Energy Storage Materials Defect-abundant commercializable 3D carbon papers for fabricating composite Li anode with high loading and long life

The 3D carbon paper (TGPH060 raw paper) were purchased from SCI Materials Hub.


5. Nanomaterials A Stable Rechargeable Aqueous Zn–Air Battery Enabled by Heterogeneous MoS2 Cathode Catalysts

Nafion D520 (5 wt%), and carbon paper (GDL340) were received from SCI-Materials-Hub.


6. SSRN An Axially Directed Cobalt-Phthalocyanine Covalent Organic Polymer as High-Efficient Bifunctional Catalyst for Zn-Air Battery

Carbon cloth (W0S1011) and other electrochemical consumables required for air cathode were provided by SCI Materials Hub.


Oxygen Reduction Reaction

1. J. Chem. Eng. Superior Efficiency Hydrogen Peroxide Production in Acidic Media through Epoxy Group Adjacent to Co-O/C Active Centers on Carbon Black

In this paper, Vulcan XC 72 carbon black, ion membrane (Nafion N115, 127 μL), Nafion solution (D520, 5 wt%), and carbon paper (AvCarb GDS 2230 and Spectracarb 2050A-1050) were purchased from SCI Materials Hub.


2. Journal of Colloid and Interface Science Gaining insight into the impact of electronic property and interface electrostatic field on ORR kinetics in alloy engineering via theoretical prognostication and experimental validation

The 20 wt% Pt3M (M = Cr, Co, Cu, Pd, Sn, and Ir) were purchased from SCI Materials Hub. This work places emphasis on the kinetics of the ORR concerning Pt3M (M = Cr, Co, Cu, Pd, Sn, and Ir) catalysts, and integrates theoretical prognostication and experimental validation to illuminate the fundamental principles of alloy engineering.


Water Electrolysis

1. International Journal of Hydrogen Energy Gold as an efficient hydrogen isotope separation catalyst in proton exchange membrane water electrolysis

The cathodic catalysts of Pt/C (20 wt%, 2–3 nm) and Au/C (20 wt%, 4–5 nm) were purchased from SCI Materials Hub.


2. Small Science Silver Compositing Boosts Water Electrolysis Activity and Durability of RuO2 in a Proton-Exchange-Membrane Water Electrolyzer

Two fiber felts (0.35 mm thickness, SCI Materials Hub) were used as the porous transport layers at both the cathode and the anode.


3. Advanced Functional Materials Hierarchical Crystalline/Amorphous Heterostructure MoNi/NiMoOx for Electrochemical Hydrogen Evolution with Industry-Level Activity and Stability

Anion-exchange membrane (FAA-3-PK-130) was obtained from SCI Materials Hub website.


Fuel Cells

1. Polymer Sub-two-micron ultrathin proton exchange membrane with reinforced mechanical strength

Gas diffusion electrode (60% Pt/C, Carbon paper) was purchased from SCI Materials Hub.


Characterization

1. Chemical Engineering Journal Electrochemical reconstitution of Prussian blue analogue for coupling furfural electro-oxidation with photo-assisted hydrogen evolution reaction

An Au nanoparticle film was deposited on the total reflecting plane of a single reflection ATR crystal (SCI Materials Hub, Wuhu, China) via sputter coater.

Related Products

We Provide A Broad Range of Materials, Instruments & Solutions in Advanced Science and Technologies About Us
Product consultation
Customer service1
Customer service2
After-sales and technical consultation
Customer service1
Customer service2
WeChat Customer Service

Back to top