Welcome to the SCI Materials Hub !
Home > Single pass > Barbed hose fitting > Reducer Straight Barbed Connector (PP)

Reducer Straight Barbed Connector (PP)

  • Product Code:
  • Description:
  • Brand:SCI Materials Hub
  • Lead time:Ask for quote
  • Views:
  • Telephone:+86 153-5789-9751; +86 156-0553-2352
  • Keywords:Reducer Straight Barbed Connector (PP), SCI Materials Hub
65.7K

Reducer Straight Barbed Connector (PP)

The PP (Polypropylene) reducing straight-through tower adapter is a high-performance connector specifically designed for connecting hoses of different diameters. It is widely used in laboratories, chemical industries, medical fields, and more, solving the problem of connecting hoses of varying sizes in pipeline systems.


1.Product Features
1.High-Quality PP Material

  • Chemical Resistance: Resistant to acid, alkali, and solvent corrosion, suitable for various chemical environments.

  • Durability: Performs excellently in high temperature and high humidity environments, ensuring a long service life.

  • Lightweight Design: Low density of PP material makes installation and operation easy.

2.Tower-Shaped Interface Design

  • Multi-Tooth Clamping: The tower-shaped interface firmly contacts the hose, preventing leaks and slippage.

  • Flexible Connection: Compatible with various hose materials, such as silicone tubes and PVC pipes.

3.Reducing Straight-Through Design

  • Flexible Adaptation: Different diameters on both ends allow for connection of hoses of varying sizes.

  • Good Fluid Continuity: Optimized design reduces fluid resistance caused by the diameter change.

4.User-Friendly

  • Easy Installation: No complex tools required; simply insert the hose to complete the installation.

  • Optional Clamp Use: Can be used with clamps as needed to further enhance sealing.


2. Product specifications

Reducer Straight Barbed Connector (PP)
ModelCompatible Hose Inner Diameter (Unit: mm)
B16241.0-2.4/1.6-3.0
B16321.0-2.4/2.0-3.5
B24321.6-3.0/2.0-3.5
B24401.6-3.0/3.0-5.0
B32402.0-3.5/3.0-5.0
B32482.0-3.5/4.0-6.0
B40483.0-5.0/4.0-6.0
B40643.0-5.0/4.8-7.0
B48644.0-6.0/4.8-7.0
B48874.0-6.0/6.4-9.0
B64874.8-7.0/6.4-9.0
B951278.0-10.0/9.5-13.0


Note: Different specifications can be customized according to requirements.


3.Application Scenarios
1.Laboratory Field

  • Liquid or gas transfer between different diameter pipelines in chemical experiments.

  • Connection of reducing interfaces in water circulation equipment.

2.Industrial Field

  • Equipment connections requiring multi-diameter hose fittings on production lines.

  • Reducing connections for corrosive media in chemical production.

3.Medical Field

  • Connections of delivery hoses with different diameters in medical equipment.

  • Interface connections for gas and liquid circulation pipelines in pharmaceutical equipment.

4.Agricultural and Household Scenarios

  • Connections of water pipes with different diameters in gardening micro-sprinkler irrigation systems.

  • Connections between household small pumps and hoses of varying sizes.


4.Installation and Maintenance
1.Installation Steps

  • Ensure that the inner diameter of the hose matches the outer diameter of the corresponding end of the tower fitting.

  • Gently insert the hose and ensure that the connection point is secure without any looseness.

  • If necessary, use clamps or zip ties to secure the hose, enhancing stability and sealing.

2.Maintenance Recommendations

  • Regularly check the connection between the hose and the fitting to avoid leaks caused by aging or wear.

  • When dealing with high-temperature or high-pressure media, confirm that the working environment is within the tolerance range of PP materials.


5.Product Advantages

  • Versatile Connections: Meets the needs for connecting hoses of different diameters, solving size mismatch issues.

  • High Cost-Effectiveness: Durable and reasonably priced, suitable for large-scale use.

  • Ease of Operation: Simple and quick installation, allowing connections to be completed without complex tools.

PP reducing straight-through fittings are an efficient solution in the field of fluid connections, providing reliable pipeline connections for laboratory, industrial, and medical scenarios, helping you achieve seamless connections for hoses of various sizes effortlessly.



For international orders, please ask us for quotes via

Email: contact@scimaterials.cn

Tel: +86 153-5789-9751


Clik here to put quick orders on our Alibaba shop

Reducer Straight Barbed Connector (PP)
Product NameCompatible Hose Inner Diameter(mm)Price (USD)Lead Time
B16241.0-2.4/1.6-3.0$ 4Ask for quote
B16321.0-2.4/2.0-3.5$ 4Ask for quote
B24321.6-3.0/2.0-3.5$ 4Ask for quote
B24401.6-3.0/3.0-5.0$ 4Ask for quote
B32402.0-3.5/3.0-5.0$ 4Ask for quote
B32482.0-3.5/4.0-6.0$ 4Ask for quote
B40483.0-5.0/4.0-6.0$ 4Ask for quote
B40643.0-5.0/4.8-7.0$ 4Ask for quote
B48644.0-6.0/4.8-7.0$ 4Ask for quote
B48874.0-6.0/6.4-9.0$ 4Ask for quote
B64874.8-7.0/6.4-9.0$ 4Ask for quote
B951278.0-10.0/9.5-13.0$ 4Ask for quote
All set kitB1624-B95127$ 40Ask for quote

For specific specifications, please refer to the parameters.


- The price listed above is in U.S. dollars

Worldwide shipping via DHL, SF-Express, FedEx, TNT & other requested carriers.

Payments via Bank Transfer, Paypal, Credit card (via Alibaba), Alipay, Wechat-pay are accepted.


Please contact us for larger quantities or becoming our distributors.


Partial references citing our materials (from Google Scholar)


Carbon Dioxide Reduction

1. ACS Nano Strain Relaxation in Metal Alloy Catalysts Steers the Product Selectivity of Electrocatalytic CO2 Reduction

The bipolar membrane (Fumasep FBM) in this paper was purchased from SCI Materials Hub, which was used in rechargeable Zn-CO2 battery tests. The authors reported a strain relaxation strategy to determine lattice strains in bimetal MNi alloys (M = Pd, Ag, and Au) and realized an outstanding CO2-to-CO Faradaic efficiency of 96.6% with outstanding activity and durability toward a Zn-CO2 battery.


2. Front. Chem. Boosting Electrochemical Carbon Dioxide Reduction on Atomically Dispersed Nickel Catalyst

In this paper, Vulcan XC-72R was purchased from SCI Materials Hub. Vulcan XC 72R carbon is the most common catalyst support used in the anode and cathode electrodes of Polymer Electrolyte Membrane Fuel Cells (PEMFC), Direct Methanol Fuel Cells (DMFC), Alkaline Fuel Cells (AFC), Microbial Fuel Cells (MFC), Phosphoric Acid Fuel Cells (PAFC), and many more!


3. Adv. Mater. Partially Nitrided Ni Nanoclusters Achieve Energy-Efficient Electrocatalytic CO2 Reduction to CO at Ultralow Overpotential

An AEM membrane (Sustainion X37-50 Grade RT, purchased from SCI Materials Hub) was activated in 1 M KOH for 24 h, washed with ultra-purity water prior to use.


4. Adv. Funct. Mater. Nanoconfined Molecular Catalysts in Integrated Gas Diffusion Electrodes for High-Current-Density CO2 Electroreduction

In this paper (Supporting Information), an anion exchanged membrane (Fumasep FAB-PK-130 obtained from SCI Materials Hub (www.scimaterials.cn)) was used to separate the catholyte and anolyte chambers.

SCI Materials Hub: we also recommend our Fumasep FAB-PK-75 for the use in a flow cell.


5. Appl. Catal. B Efficient utilization of nickel single atoms for CO2 electroreduction by constructing 3D interconnected nitrogen-doped carbon tube network

In this paper, the Nafion 117 membrane was obtained from SCI Materials Hub.


6. Vacuum Modulable Cu(0)/Cu(I)/Cu(II) sites of Cu/C catalysts derived from MOF for highly selective CO2 electroreduction to hydrocarbons

In this paper, Proton exchange membrane (Nafion 117), Nafion D520, and Toray 060 carbon paper were purchased from SCI Materials Hub.


7. National Science Review Confinement of ionomer for electrocatalytic CO2 reduction reaction via efficient mass transfer pathways

An anion exchange membrane (PiperION-A15-HCO3) was obtained from SCI Materials Hub.


8. Catalysis Communications Facilitating CO2 electroreduction to C2H4 through facile regulating {100} & {111} grain boundary of Cu2O

Carbon paper (TGPH060), membrane solution (Nafion D520), and ionic membrane (Nafion N117) were obtained from Wuhu Eryi Material Technology Co., Ltd (a company under SCI Materials Hub).


Batteries

1. J. Mater. Chem. A Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium–sulfur batteries

Graphene oxide (GO) in this paper was obtained from SCI Materials Hub. The authors introduced a Janus Fe3C/N-CNF@RGO electrode consisting of 1D Fe3C decorated N-doped carbon nanofibers (Fe3C/N-CNFs) side and 2D reduced graphene oxide (RGO) side as the free-standing carrier of Li2S6 catholyte to improve the overall electrochemical performance of Li-S batteries.


2. Joule A high-voltage and stable zinc-air battery enabled by dual-hydrophobic-induced proton shuttle shielding

This paper used more than 10 kinds of materials from SCI Materials Hub and the authors gave detailed properity comparsion.

The commercial IEMs of Fumasep FAB-PK-130 and Nafion N117 were obtained from SCI Materials Hub.

Gas diffusion layers of GDL340 (CeTech) and SGL39BC (Sigracet) and Nafion dispersion (Nafion D520) were obtained from SCI Materials Hub.

Zn foil (100 mm thickness) and Zn powder were obtained from the SCI Materials Hub.

Commercial 20% Pt/C, 40% Pt/C and IrO2 catalysts were also obtained from SCI Materials Hub.


3. Journal of Energy Chemistry Vanadium oxide nanospheres encapsulated in N-doped carbon nanofibers with morphology and defect dual-engineering toward advanced aqueous zinc-ion batteries

In this paper, carbon cloth (W0S1011) was obtained from SCI Materials Hub. The flexible carbon cloth matrix guaranteed the stabilization of the electrode and improved the conductivity of the cathode.


4. Energy Storage Materials Defect-abundant commercializable 3D carbon papers for fabricating composite Li anode with high loading and long life

The 3D carbon paper (TGPH060 raw paper) were purchased from SCI Materials Hub.


5. Nanomaterials A Stable Rechargeable Aqueous Zn–Air Battery Enabled by Heterogeneous MoS2 Cathode Catalysts

Nafion D520 (5 wt%), and carbon paper (GDL340) were received from SCI-Materials-Hub.


6. SSRN An Axially Directed Cobalt-Phthalocyanine Covalent Organic Polymer as High-Efficient Bifunctional Catalyst for Zn-Air Battery

Carbon cloth (W0S1011) and other electrochemical consumables required for air cathode were provided by SCI Materials Hub.


Oxygen Reduction Reaction

1. J. Chem. Eng. Superior Efficiency Hydrogen Peroxide Production in Acidic Media through Epoxy Group Adjacent to Co-O/C Active Centers on Carbon Black

In this paper, Vulcan XC 72 carbon black, ion membrane (Nafion N115, 127 μL), Nafion solution (D520, 5 wt%), and carbon paper (AvCarb GDS 2230 and Spectracarb 2050A-1050) were purchased from SCI Materials Hub.


2. Journal of Colloid and Interface Science Gaining insight into the impact of electronic property and interface electrostatic field on ORR kinetics in alloy engineering via theoretical prognostication and experimental validation

The 20 wt% Pt3M (M = Cr, Co, Cu, Pd, Sn, and Ir) were purchased from SCI Materials Hub. This work places emphasis on the kinetics of the ORR concerning Pt3M (M = Cr, Co, Cu, Pd, Sn, and Ir) catalysts, and integrates theoretical prognostication and experimental validation to illuminate the fundamental principles of alloy engineering.


Water Electrolysis

1. International Journal of Hydrogen Energy Gold as an efficient hydrogen isotope separation catalyst in proton exchange membrane water electrolysis

The cathodic catalysts of Pt/C (20 wt%, 2–3 nm) and Au/C (20 wt%, 4–5 nm) were purchased from SCI Materials Hub.


2. Small Science Silver Compositing Boosts Water Electrolysis Activity and Durability of RuO2 in a Proton-Exchange-Membrane Water Electrolyzer

Two fiber felts (0.35 mm thickness, SCI Materials Hub) were used as the porous transport layers at both the cathode and the anode.


3. Advanced Functional Materials Hierarchical Crystalline/Amorphous Heterostructure MoNi/NiMoOx for Electrochemical Hydrogen Evolution with Industry-Level Activity and Stability

Anion-exchange membrane (FAA-3-PK-130) was obtained from SCI Materials Hub website.


Fuel Cells

1. Polymer Sub-two-micron ultrathin proton exchange membrane with reinforced mechanical strength

Gas diffusion electrode (60% Pt/C, Carbon paper) was purchased from SCI Materials Hub.


Characterization

1. Chemical Engineering Journal Electrochemical reconstitution of Prussian blue analogue for coupling furfural electro-oxidation with photo-assisted hydrogen evolution reaction

An Au nanoparticle film was deposited on the total reflecting plane of a single reflection ATR crystal (SCI Materials Hub, Wuhu, China) via sputter coater.

Related Products

We Provide A Broad Range of Materials, Instruments & Solutions in Advanced Science and Technologies About Us
Product consultation
Customer service1
Customer service2
After-sales and technical consultation
Customer service1
Customer service2
WeChat Customer Service

Back to top