3-Layer Catalyst Coated Membrane|High-Performance Noble Metal Catalysts|Multi-Brand Customization Available
The NEXIONIC® Nafion PEM Water Electrolysis MEA is specifically designed for Proton Exchange Membrane (PEM) water electrolysis systems. It adopts a 3-layer catalyst-coated membrane (CCM) structure with excellent conductivity, catalytic performance, and chemical stability. Each MEA consists of:
Cathode Catalyst Layer: Pt/C (0.1–2 mg/cm²) or Pt Black (1–4 mg/cm²)
PEM Layer: Nafion series membranes (NR212, N115, N117)
Anode Catalyst Layer: IrO₂ or IrRuO₂ (1–4 mg/cm²)
All catalyst layers are bonded using Nafion ionomer binders, ensuring strong interfacial contact and efficient proton conduction.
Feature | Description |
---|---|
🔬 Integrated 3-Layer Structure | Cathode + Membrane + Anode in one piece; low interfacial resistance |
⚡ High Catalytic Activity | Noble metal catalysts reduce OER and HER overpotentials |
🧴 Nafion Binder Integration | Excellent proton transport and structural stability |
🧪 Multi-brand Catalyst Options | Support for various renowned catalyst brands |
📦 Delivered in Dry State | Dry by default; easier for transport and thermal compression |
🔧 Customizable Sizes & Layers | Hot-pressed or non-pressed; optional GDL, sealing gaskets, etc. |
Parameter | Specification |
---|---|
Structure | 3-Layer CCM (Cathode + Membrane + Anode) |
Cathode Catalyst | Pt/C (0.1–0.5 mg/cm²) or Pt Black (1–4 mg/cm²) |
Anode Catalyst | IrO₂ or IrRuO₂ (1–4 mg/cm²) |
Supported Catalyst Brands | Premetek®, Accelerate®, Fueiceel®, JM Hispec, Alfa Aesar, Tanaka (Japan) |
Membrane Type | Nafion NR212 (~51 µm), N115 (~127 µm), N117 (~183 µm) |
Binder Type | Nafion ionomer (D520, D521, D2020, D2021) |
Factory Condition | Dry by default; hot-pressed or non-pressed upon request |
Standard Sizes | 1×1 cm², 2×2 cm², 2.25×2.25 cm², 5×5 cm², 10×10 cm²; custom sizes supported |
Orientation | Anode (+) faces OER side; Cathode (–) faces HER side |
PEM single-cell water electrolysis experiments
Electrolyzer stack development and evaluation
Green hydrogen production research and education
Electrode material validation platforms
Catalyst comparison and benchmarking studies
Module | Customization Options |
---|---|
🎯 Electrode Size | Circular / square / irregular cutting supported |
🧬 Catalyst Loading | Adjustable based on research or application requirements |
🧩 Add-on Layers | Add GDLs (titanium mesh/foam), sealing gaskets, or support layers |
🔥 Thermal Compression | Supplied hot-pressed or non-pressed (user pressable) |
Category | Options |
---|---|
MEA Structure | - 3-layer CCM - 5-layer CCM + 2 gaskets - 7-layer MEA (with PTLs) |
Cathode Catalyst | Pt/C or Pt Black (Premetek®, Accelerate®, Fueiceel®, Tanaka, etc.) |
Anode Catalyst | IrO₂ or IrRuO₂ (same brand options) |
PEM Membrane | Nafion® N115 / N117, or Fumasep® F-10120-PK / FS-990-PK |
Ionomer Binder | Nafion® D520 / D521 (5%), D2020 / D2021 (20%) |
Binder-to-Catalyst Ratio | Standard 20 wt%, adjustable from 10–35 wt% |
Hot Pressing | Optional; hot-pressed or non-pressed supply |
Hot Pressing Conditions | 120–140 °C, 1–2 MPa, 2–5 minutes |
Optional Structures | PTLs (titanium mesh/foam), matching gaskets |
Size Options | From 1×1 cm² up to 10×10 cm²; custom shapes available |
Delivery Condition | Dry by default; wet version available on request |
Logistics: Default via SF Express (standard or cold chain); international DHL supported
Lead Time: Stock items ship in 1–3 business days; custom orders in 3–7 days
Included Materials: User manual, product labels, catalyst loading and brand info
Invoice: Standard or VAT invoices available for institutions and businesses
📞 For tailored design, experimental support, or consultation, please contact our support team via [Customer Service] or [Order Now]!
For international orders, please ask us for quotes via
Email: contact@scimaterials.cn
Tel: +86 130-0303-8751 / +86 156-0553-2352
Wechat: 15375698751
Active Area (cm²) | Cathode Catalyst | Anode Catalyst | Membrane | Hot Pressing | Catalyst loading (Cathode + Anode, mg/cm²) & Price |
---|---|---|---|---|---|
1x1 | TKK 40%Pt/C | Accelerate® IrO₂ | N115 3x3cm | No | USD$30 (0 + 2, single anode coating) USD$25 (0.5 + 0, single cathode coating) USD$50 (0.5 + 2, double sides coating) |
1x1 | TKK Pt Black | Accelerate® IrO₂ | N115 3x3cm | No | USD$30 (0 + 2, single anode coating) USD$30 (2 + 0, single cathode coating) USD$55 (2 + 2, double sides coating) |
2x2 | TKK 40%Pt/C | Accelerate® IrO₂ | N115 5x5cm | No | USD$60 (0 + 2, single anode coating) USD$50 (0.5 + 0, single cathode coating) USD$100 (0.5 + 2, double sides coating) |
2x2 | TKK Pt Black | Accelerate® IrO₂ | N115 5x5cm | No | USD$60 (0 + 2, single anode coating) USD$60 (2 + 0, single cathode coating) USD$110 (2 + 2, double sides coating) |
2.25x2.25 | TKK 40%Pt/C | Accelerate® IrO₂ | N115 5x5cm | No | USD$70 (0 + 2, single anode coating) USD$60 (0.5 + 0, single cathode coating) USD$120 (0.5 + 2, double sides coating) |
2.25x2.25 | TKK Pt Black | Accelerate® IrO₂ | N115 5x5cm | No | USD$70 (0 + 2, single anode coating) USD$70 (2 + 0, single cathode coating) USD$130 (2 + 2, double sides coating) |
5x5 | TKK 40%Pt/C | Accelerate® IrO₂ | N115 7x7cm | No | USD$140 (0 + 2, single anode coating) USD$120 (0.5 + 0, single cathode coating) USD$190 (0.5 + 2, double sides coating) |
5x5 | TKK Pt Black | Accelerate® IrO₂ | N115 7x7cm | No | USD$140 (0 + 2, single anode coating) USD$140 (2 + 0, single cathode coating) USD$200 (2 + 2, double sides coating) |
10x10 | TKK 40%Pt/C | Accelerate® IrO₂ | N115 12x12cm | No | USD$250 (0 + 2, single anode coating) USD$200 (0.5 + 0, single cathode coating) USD$300 (0.5 + 2, double sides coating) |
10x10 | TKK Pt Black | Accelerate® IrO₂ | N115 12x12cm | No | USD$250 (0 + 2, single anode coating) USD$220 (2 + 0, single cathode coating) USD$320 (2 + 2, double sides coating) |
Customized size | Customizable | Customizable | Customizable | Customizable | Ask for quote |
Other cost: hot pressing (+USD10), hot pressing+PEN edge banding film (+USD20)
The default cathode catalyst is TKK Platinum Carbon & Platinum Black, and the anode catalyst is Accelerate ® IrO₂
Other catalysts available: Premetek®, Accelerate®, Fueiceel®, JM Hispec®, Alfa Aesar®, TKK
Worldwide shipping via DHL, SF-Express & other requested carriers.
Bulk quantities with discount upon request.
Payments via Bank Wire Transfer, Paypal, Credit card (via Taobao), Alipay, Wechat-pay are accepted.
Partial references citing our materials (from Google Scholar)
Carbon Dioxide Reduction
1. ACS Nano Strain Relaxation in Metal Alloy Catalysts Steers the Product Selectivity of Electrocatalytic CO2 Reduction
The bipolar membrane (Fumasep FBM) in this paper was purchased from SCI Materials Hub, which was used in rechargeable Zn-CO2 battery tests. The authors reported a strain relaxation strategy to determine lattice strains in bimetal MNi alloys (M = Pd, Ag, and Au) and realized an outstanding CO2-to-CO Faradaic efficiency of 96.6% with outstanding activity and durability toward a Zn-CO2 battery.
2. Front. Chem. Boosting Electrochemical Carbon Dioxide Reduction on Atomically Dispersed Nickel Catalyst
In this paper, Vulcan XC-72R was purchased from SCI Materials Hub. Vulcan XC 72R carbon is the most common catalyst support used in the anode and cathode electrodes of Polymer Electrolyte Membrane Fuel Cells (PEMFC), Direct Methanol Fuel Cells (DMFC), Alkaline Fuel Cells (AFC), Microbial Fuel Cells (MFC), Phosphoric Acid Fuel Cells (PAFC), and many more!
3. Adv. Mater. Partially Nitrided Ni Nanoclusters Achieve Energy-Efficient Electrocatalytic CO2 Reduction to CO at Ultralow Overpotential
An AEM membrane (Sustainion X37-50 Grade RT, purchased from SCI Materials Hub) was activated in 1 M KOH for 24 h, washed with ultra-purity water prior to use.
4. Adv. Funct. Mater. Nanoconfined Molecular Catalysts in Integrated Gas Diffusion Electrodes for High-Current-Density CO2 Electroreduction
In this paper (Supporting Information), an anion exchanged membrane (Fumasep FAB-PK-130 obtained from SCI Materials Hub (www.scimaterials.cn)) was used to separate the catholyte and anolyte chambers.
SCI Materials Hub: we also recommend our Fumasep FAB-PK-75 for the use in a flow cell.
5. Appl. Catal. B Efficient utilization of nickel single atoms for CO2 electroreduction by constructing 3D interconnected nitrogen-doped carbon tube network
In this paper, the Nafion 117 membrane was obtained from SCI Materials Hub.
In this paper, Proton exchange membrane (Nafion 117), Nafion D520, and Toray 060 carbon paper were purchased from SCI Materials Hub.
7. National Science Review Confinement of ionomer for electrocatalytic CO2 reduction reaction via efficient mass transfer pathways
An anion exchange membrane (PiperION-A15-HCO3) was obtained from SCI Materials Hub.
8. Catalysis Communications Facilitating CO2 electroreduction to C2H4 through facile regulating {100} & {111} grain boundary of Cu2O
Carbon paper (TGPH060), membrane solution (Nafion D520), and ionic membrane (Nafion N117) were obtained from Wuhu Eryi Material Technology Co., Ltd (a company under SCI Materials Hub).
Batteries
1. J. Mater. Chem. A Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium–sulfur batteries
Graphene oxide (GO) in this paper was obtained from SCI Materials Hub. The authors introduced a Janus Fe3C/N-CNF@RGO electrode consisting of 1D Fe3C decorated N-doped carbon nanofibers (Fe3C/N-CNFs) side and 2D reduced graphene oxide (RGO) side as the free-standing carrier of Li2S6 catholyte to improve the overall electrochemical performance of Li-S batteries.
This paper used more than 10 kinds of materials from SCI Materials Hub and the authors gave detailed properity comparsion.
The commercial IEMs of Fumasep FAB-PK-130 and Nafion N117 were obtained from SCI Materials Hub.
Gas diffusion layers of GDL340 (CeTech) and SGL39BC (Sigracet) and Nafion dispersion (Nafion D520) were obtained from SCI Materials Hub.
Zn foil (100 mm thickness) and Zn powder were obtained from the SCI Materials Hub.
Commercial 20% Pt/C, 40% Pt/C and IrO2 catalysts were also obtained from SCI Materials Hub.
3. Journal of Energy Chemistry Vanadium oxide nanospheres encapsulated in N-doped carbon nanofibers with morphology and defect dual-engineering toward advanced aqueous zinc-ion batteries
In this paper, carbon cloth (W0S1011) was obtained from SCI Materials Hub. The flexible carbon cloth matrix guaranteed the stabilization of the electrode and improved the conductivity of the cathode.
4. Energy Storage Materials Defect-abundant commercializable 3D carbon papers for fabricating composite Li anode with high loading and long life
The 3D carbon paper (TGPH060 raw paper) were purchased from SCI Materials Hub.
5. Nanomaterials A Stable Rechargeable Aqueous Zn–Air Battery Enabled by Heterogeneous MoS2 Cathode Catalysts
Nafion D520 (5 wt%), and carbon paper (GDL340) were received from SCI-Materials-Hub.
Carbon cloth (W0S1011) and other electrochemical consumables required for air cathode were provided by SCI Materials Hub.
Oxygen Reduction Reaction
1. J. Chem. Eng. Superior Efficiency Hydrogen Peroxide Production in Acidic Media through Epoxy Group Adjacent to Co-O/C Active Centers on Carbon Black
In this paper, Vulcan XC 72 carbon black, ion membrane (Nafion N115, 127 μL), Nafion solution (D520, 5 wt%), and carbon paper (AvCarb GDS 2230 and Spectracarb 2050A-1050) were purchased from SCI Materials Hub.
2. Journal of Colloid and Interface Science Gaining insight into the impact of electronic property and interface electrostatic field on ORR kinetics in alloy engineering via theoretical prognostication and experimental validation
The 20 wt% Pt3M (M = Cr, Co, Cu, Pd, Sn, and Ir) were purchased from SCI Materials Hub. This work places emphasis on the kinetics of the ORR concerning Pt3M (M = Cr, Co, Cu, Pd, Sn, and Ir) catalysts, and integrates theoretical prognostication and experimental validation to illuminate the fundamental principles of alloy engineering.
Water Electrolysis
1. International Journal of Hydrogen Energy Gold as an efficient hydrogen isotope separation catalyst in proton exchange membrane water electrolysis
The cathodic catalysts of Pt/C (20 wt%, 2–3 nm) and Au/C (20 wt%, 4–5 nm) were purchased from SCI Materials Hub.
2. Small Science Silver Compositing Boosts Water Electrolysis Activity and Durability of RuO2 in a Proton-Exchange-Membrane Water Electrolyzer
Two fiber felts (0.35 mm thickness, SCI Materials Hub) were used as the porous transport layers at both the cathode and the anode.
3. Advanced Functional Materials Hierarchical Crystalline/Amorphous Heterostructure MoNi/NiMoOx for Electrochemical Hydrogen Evolution with Industry-Level Activity and Stability
Anion-exchange membrane (FAA-3-PK-130) was obtained from SCI Materials Hub website.
Fuel Cells
1. Polymer Sub-two-micron ultrathin proton exchange membrane with reinforced mechanical strength
Gas diffusion electrode (60% Pt/C, Carbon paper) was purchased from SCI Materials Hub.
Characterization
1. Chemical Engineering Journal Electrochemical reconstitution of Prussian blue analogue for coupling furfural electro-oxidation with photo-assisted hydrogen evolution reaction
An Au nanoparticle film was deposited on the total reflecting plane of a single reflection ATR crystal (SCI Materials Hub, Wuhu, China) via sputter coater.
![]() |
We Provide A Broad Range of Materials, Instruments & Solutions in Advanced Science and Technologies | About Us |